求微分方程y(1+x^2)dy+x(1+y^2)dx=0满足y(1)=1的解
展开全部
ydy/(1+y^2)=-xdx/(1+x^2)
两边积分,得1/2ln(1+y^2)=-1/2ln(1+x^2)+C
得(1+y^2)(1+x^2)=C'(C'=e^(2C))
代入x=1,y=1得C'=4
所以方程的解为(1+x^2)(1+y^2)=4
两边积分,得1/2ln(1+y^2)=-1/2ln(1+x^2)+C
得(1+y^2)(1+x^2)=C'(C'=e^(2C))
代入x=1,y=1得C'=4
所以方程的解为(1+x^2)(1+y^2)=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询