怎样解一元二次方程组?
1个回答
展开全部
cosαsinβ=1/6,
sin(α-β) = sinαcosβ - cosαsinβ = sinαcosβ - 1/6 = 1/3, sinαcosβ = 1/2
sin(α+β) = sinαcosβ + cosαsinβ = 1/2 + 1/6 = 2/3
cos(2α+2β) = cos2(α+β) = 1 - 2[sin(α+β)]^2 = 1 - 8/9 = 1/9
sin(α-β) = sinαcosβ - cosαsinβ = sinαcosβ - 1/6 = 1/3, sinαcosβ = 1/2
sin(α+β) = sinαcosβ + cosαsinβ = 1/2 + 1/6 = 2/3
cos(2α+2β) = cos2(α+β) = 1 - 2[sin(α+β)]^2 = 1 - 8/9 = 1/9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询