高一数学sinA)^4/(cosB)^2+cosA^4/sinB^2=1
(sinA)^4/(cosB)^2+(cosA)^4/(sinB)^2=1,求证(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1...
(sinA)^4/(cosB)^2+(cosA)^4/(sinB)^2=1,求证
(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1 展开
(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1 展开
展开全部
证明:
(cosA)^2=1-(sinA)^2,(cosB)^2=1-(sinB)^2。
将上面两式代入条件式,并去分母得:(sinA)^4(sinB)^2+[1-(sinA)^2]^2[1-(sinB)^2]=(sinB)^2(cosB)^2。化简配平方得:[(sinA)^2+(sinB)^2-1]^2=0,有(sinA)^2+(sinB)^2=1。
知A和B处于同等地位,可以轮换对称,故直接就可以得到(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1。
当然,也可以像刚才一样,把求证式子的余弦值全换成正弦值,然后(sinB)^2=1-(sinA)^2带入其中消去(sinB)^2化简也能得到1。
证毕
(cosA)^2=1-(sinA)^2,(cosB)^2=1-(sinB)^2。
将上面两式代入条件式,并去分母得:(sinA)^4(sinB)^2+[1-(sinA)^2]^2[1-(sinB)^2]=(sinB)^2(cosB)^2。化简配平方得:[(sinA)^2+(sinB)^2-1]^2=0,有(sinA)^2+(sinB)^2=1。
知A和B处于同等地位,可以轮换对称,故直接就可以得到(sinB)^4/(cosA)^2+(cosB)^4/(sinA)^2=1。
当然,也可以像刚才一样,把求证式子的余弦值全换成正弦值,然后(sinB)^2=1-(sinA)^2带入其中消去(sinB)^2化简也能得到1。
证毕
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询