已知函数f(x)=3^x+1/(3^x) 利用单调性的定义证明在(0,正无穷)上是增函数)
2个回答
2010-12-03 · 知道合伙人教育行家
关注
展开全部
令△x>0
f(x+△x)=3^(x+△x)+1/[3^(x+△x) ] ,f(x)=3^x+1/(3^x)
f(x+△x)-f(x)=3^(x+△x)+1/[3^(x+△x) ]-3^x-1/(3^x)
=3^△x*3^x+1/(3^△x*3^x) -3^x-1/(3^x)
=(3^△x-1)*3^x+(1/3^△x-1)*1/(3^x)
=(3^△x-1)*3^x-(3^△x-1)/(3^△x*3^x)
=(3^△x-1)*【3^x-1/(3^△x*3^x)】
∵△x>0,∴3^△x>1,∴3^△x-1>0
∵x>0,∴3^x>1,又:3^△x>1,∴3^△x*3^x>1,∴1/(3^△x*3^x)<1,∴(3^x-1)/(3^△x*3^x)>0
∴(3^△x-1)*【3^x-1/(3^△x*3^x)】>0
∴f(x+△x)-f(x)>0,得证
f(x+△x)=3^(x+△x)+1/[3^(x+△x) ] ,f(x)=3^x+1/(3^x)
f(x+△x)-f(x)=3^(x+△x)+1/[3^(x+△x) ]-3^x-1/(3^x)
=3^△x*3^x+1/(3^△x*3^x) -3^x-1/(3^x)
=(3^△x-1)*3^x+(1/3^△x-1)*1/(3^x)
=(3^△x-1)*3^x-(3^△x-1)/(3^△x*3^x)
=(3^△x-1)*【3^x-1/(3^△x*3^x)】
∵△x>0,∴3^△x>1,∴3^△x-1>0
∵x>0,∴3^x>1,又:3^△x>1,∴3^△x*3^x>1,∴1/(3^△x*3^x)<1,∴(3^x-1)/(3^△x*3^x)>0
∴(3^△x-1)*【3^x-1/(3^△x*3^x)】>0
∴f(x+△x)-f(x)>0,得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询