已知函数f(x)=x^2+2ax+1, (1)求f(x)在区间[-1,2]的最小值g(a)(2)求f(x)在区间[-1,2]的值域和最大值 25
1个回答
展开全部
f(x)=x²+2ax+1=(x+a)²+1-a²
开口向上,对称轴x=-a
-a<-1→a>1,区间在对称轴右侧,f(x)单调递增 ①
g(a)=f(-1)=2-2a
-a>2→a<-2,区间在对称轴左侧,f(x)单调递减 ②
g(a)=f(2)=5+4a
-2≤a≤1 区间包含对称轴,顶点处取得最小值 ③
g(a)=1-a²
整理:g(a)=5+4a a<-2
g(a)=1-a² -2≤a≤1
g(a)=2-2a a>1
(2)① 最大值=f(2)=5+4a
f(x)∈[2-2a,5+4a]
②最大值=f(-1)=2-2a
f(x)∈[5+4a,2-2a]
③ 最大值=max[f(-1),f(2)]
f(x)∈[1-a²,2-2a] a≤-½
f(x)∈[1-a²,5+4a] a≥-½
开口向上,对称轴x=-a
-a<-1→a>1,区间在对称轴右侧,f(x)单调递增 ①
g(a)=f(-1)=2-2a
-a>2→a<-2,区间在对称轴左侧,f(x)单调递减 ②
g(a)=f(2)=5+4a
-2≤a≤1 区间包含对称轴,顶点处取得最小值 ③
g(a)=1-a²
整理:g(a)=5+4a a<-2
g(a)=1-a² -2≤a≤1
g(a)=2-2a a>1
(2)① 最大值=f(2)=5+4a
f(x)∈[2-2a,5+4a]
②最大值=f(-1)=2-2a
f(x)∈[5+4a,2-2a]
③ 最大值=max[f(-1),f(2)]
f(x)∈[1-a²,2-2a] a≤-½
f(x)∈[1-a²,5+4a] a≥-½
更多追问追答
追问
③ 最大值=max[f(-1),f(2)]
f(x)∈[1-a²,2-2a] a≤-½
f(x)∈[1-a²,5+4a] a≥-½
我不是太明白,还有参考答案是5+2a,我不是太明白,我也认为是5+4a
追答
最大值是端点值f(-1)和f(2)之间大的那个
当a-½ 5+4a大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询