证明a^n+b^n 能被p 整除 p=a+b p>n p是质数, n是奇数 。 a, b是正整数

玄色龙眼
2010-12-04 · 知道合伙人教育行家
玄色龙眼
知道合伙人教育行家
采纳数:4606 获赞数:28258
本科及研究生就读于北京大学数学科学学院

向TA提问 私信TA
展开全部
a^n + b^n
= (a+b)[a^(n-1) - a^(n-2)b + ……+ (-1)^k*a^k*b^(n-1-k)+ ……+b^(n-1)]
所以a^n+b^n 能被p 整除
(p是质数这个条件是多余的)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式