高中数学,数列问题(和不等式结合),谢谢!
数列{an}的前n项和Sn=k·(2^n)+m,k≠0且a1=3(1)求数列{an}的通项公式(2)设bn=n/(an),Tn是数列{an}的前n项和,求使得Tn<(m/...
数列{an}的前n项和Sn=k·(2^n)+m,k≠0且a1=3
(1)求数列{an}的通项公式
(2)设bn=n/(an),Tn是数列{an}的前n项和,求使得Tn<(m/30),对任意n属于N*都成立的最小整数m
谢谢,要过程,谢谢! 展开
(1)求数列{an}的通项公式
(2)设bn=n/(an),Tn是数列{an}的前n项和,求使得Tn<(m/30),对任意n属于N*都成立的最小整数m
谢谢,要过程,谢谢! 展开
2个回答
展开全部
(1)an=Sn-Sn-1=k(2^n-2^n-1)=k2^n-1
a1=3代入上式得k=3
所以an=3*2^n-1
(2) bn=n/an=n/(3*2^n-1)
Tn=1/3+2/6+3/12+…+bn
1/2(Tn)=1/6+2/12+3/24+…+1/2(bn)
相减可得1/2(Tn)=1/3+1/6+1/12+…+1/(3*2^n)-1/2(bn)=2/3(1-(1/2)^n)-n/(3*2^n)
化简得Tn=(4*2^n-4-n)/(3*2^n)
由极限知识得Tn极限值=4/3
所以Tn小于4/3 解得m(min)=40
符号不好打,希望你看得懂。
a1=3代入上式得k=3
所以an=3*2^n-1
(2) bn=n/an=n/(3*2^n-1)
Tn=1/3+2/6+3/12+…+bn
1/2(Tn)=1/6+2/12+3/24+…+1/2(bn)
相减可得1/2(Tn)=1/3+1/6+1/12+…+1/(3*2^n)-1/2(bn)=2/3(1-(1/2)^n)-n/(3*2^n)
化简得Tn=(4*2^n-4-n)/(3*2^n)
由极限知识得Tn极限值=4/3
所以Tn小于4/3 解得m(min)=40
符号不好打,希望你看得懂。
展开全部
(1)an=Sn-Sn-1=k(2^n-2^n-1)=k2^n-1
a1=3代入上式得k=3
所以an=3*2^n-1
(2) bn=n/an=n/(3*2^n-1)
Tn=1/3+2/6+3/12+…+bn
1/2(Tn)=1/6+2/12+3/24+…+1/2(bn)
相减可得1/2(Tn)=1/3+1/6+1/12+…+1/(3*2^n)-1/2(bn)=2/3(1-(1/2)^n)-n/(3*2^n)
化简得Tn=(4*2^n-4-n)/(3*2^n)
由极限知识得Tn极限值=4/3
所以Tn小于4/3 解得m(min)=40
符号不好
a1=3代入上式得k=3
所以an=3*2^n-1
(2) bn=n/an=n/(3*2^n-1)
Tn=1/3+2/6+3/12+…+bn
1/2(Tn)=1/6+2/12+3/24+…+1/2(bn)
相减可得1/2(Tn)=1/3+1/6+1/12+…+1/(3*2^n)-1/2(bn)=2/3(1-(1/2)^n)-n/(3*2^n)
化简得Tn=(4*2^n-4-n)/(3*2^n)
由极限知识得Tn极限值=4/3
所以Tn小于4/3 解得m(min)=40
符号不好
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询