在线等 跪求这段英文的翻译 需要专业翻译 20

Thereareweightsassignedwitheacharrow,whichrepresentinformationflow.Theseweightsaremul... There are weights assigned with each arrow, which represent information flow. These weights are multiplied by the values which go through each arrow, to give more or less strength to the signal which they transmit. The neurons of this network just sum their inputs. Since the input neurons have only one input, their output will be the input they received multiplied by a weight. What happens if this weight is negative? What happens if this weight is zero?
The neurons on the output layer receive the outputs of both input neurons, multiplied by their respective weights, and sum them. They give an output which is multiplied by another weight.
Now, set all the weights to be equal to one. This means that the information will flow unaffected. Compute the outputs of the network for the following inputs: (1,1), (1,0), (0,1), (0,0), (-1,1), (-1,-1).
Good. Now, choose weights among 0.5, 0, and -0.5, and set them randomly along the network. Compute the outputs for the same inputs as above. Change some weights and see how the behaviour of the networks changes. Which weights are more critical (if you change those weights, the outputs will change more dramatically)?
Now, suppose we want a network like the one we are working with, such that the outputs should be the inputs in inverse order (e.g. (0.3,0.7)->(0.7,0.3)).
That was an easy one! Another easy network would be one where the outputs should be the double of the inputs.
Now, let’s set thresholds to the neurons. This is, if the previous output of the neuron (weighted sum of the inputs) is greater than the threshold of the neuron, the output of the neuron will be one, and zero otherwise. Set thresholds to a couple of the already developed networks, and see how this affects their behaviour.
Now, suppose we have a network which will receive for inputs only zeroes and/or ones. Adjust the weights and thresholds of the neurons so that the output of the first output neuron will be the conjunction (AND) of the network inputs (one when both inputs are one, zero otherwise), and the output of the second output neuron will be the disjunction (OR) of the network inputs (zero in both inputs are zeroes, one otherwise). You can see that there is more than one network which will give the requested result.
Now, perhaps it is not so complicated to adjust the weights of such a small network, but also the capabilities of this are quite limited. If we need a network of hundreds of neurons, how would you adjust the weights to obtain the desired output? There are methods for finding them, and now we will expose the most common one.
展开
 我来答
左手约定8023
2010-12-05
知道答主
回答量:2
采纳率:0%
帮助的人:0
展开全部
有重量,每支箭至指定代表信息流。这些权值是乘以每支箭穿过的价值观,给或多或少的讯号强度他们传输。这些神经元就和这个网络的原材料。因为输入神经元只有一个输入,它们的输出将输入,他们收到的乘重量。发生什么事,如果这个重量是负面的?发生什么事,如果这个重量等于零。

这些神经元的输出层收到输出的两条输入神经元,乘以各自的权重,和他们。他们给输出是乘以另一个重量。

现在,将所有的重量等于一个。这意味着信息流量将不受影响。计算网络的输出下列输入:(1,1),(1,0)、(0,1),(0,0)、(- 1,1),(- 1,- 1)。

好。现在,选择重量在0.5,0进去,-0.5随机,使他们在网络。计算为相同的输入输出如上。改变一些体重,看看网络的行为变化。而更重要的重量(如果你改变了重量、输出更加引人注目的解释将改变吗?

现在,假如我们想要一个网络如与我们合作并输出,这样就应该投入逆订购(例句。(0.3,0.7)- >(0.7,0.3)。

这是个很简单的!另一个简单的网络将会在这个世界上,应该输出的输入的两倍。

现在,让我们定阈值的神经元。这是,如果先前的输出(神经元的加权和的投入是大于阈值,输出神经元的神经元的将是一个,而零不然。设置阈值的两个网络已经发展了,看看是否这影响到他们的行为。

现在,假设我们拥有一个网络,将收到为输入0和/或那些只。调整重量和阈值的神经元,使得其中一个触发器的输出将第一个输出神经元之间的连接(而且)的网络输入(一个当两输入信号一、零其它的)和输出的第二输出神经元会存在(或)的网络输入(零在两个输入信号零点,一个不)。你可以看到有不止一个网络,这将给所要求的结果。

现在,也许它并不复杂,调整重量这么小的网络,还能力的这非常受限制。如果我们需要一个网络数以百计的神经元,你会点样调整重量得到你想要的结果吗?有些方法寻找他们,现在我们将使最普遍的理由
奇兵12
2010-12-05
知道答主
回答量:10
采纳率:0%
帮助的人:4.2万
展开全部
有重量分配与每个箭头,代表信息流。 这些重量乘以审阅每个箭头的价值,给更多或较少力量他们传送的信号。 这个网络的神经元求和他们的输入。 因为他们接受乘以重量的输入神经元只有输入的一,他们的产品将是输入。 如果这重量是消极的,什么发生? 如果这重量是零,什么发生?在产品层数的The神经元接受两个输入神经元产品,乘以他们的各自重量,并且求和他们。 他们给乘以另一重量的产品。
Now,设置所有重量是相等的到一个。 这意味着信息将流动未受影响。 计算网络的产品以下输入的: (1,1), (1,0), (0,1), (0,0), (- 1,1), (- 1, - 1)。
Good. 现在,选择在0.5, 0和-0.5之中的重量,并且沿网络任意地设置他们。 计算输入的产品和上面一样。 改变一些重量并且看见网络的行为怎么改变。 哪些重量是更加重要的(如果您改变那些重量,产品是否显著将改变) ?
Now,假设我们想要网络,如我们工作与的那个,这样产品应该是输入按相反顺序((即0.3, 0.7) - > (0.7, 0.3))。
That是一容易一个! 另一个容易的网络是一个产品应该是输入的双的地方。
Now,对神经元的let’s集合门限。 这是,如果神经元(输入的被衡量的总和的早先产品)比神经元的门限伟大,神经元的产品将是一个,并且否则调零。 设置门限对两三个已经被开发的网络,并且看见这怎么影响他们的行为。
Now,假设我们有为输入仅零并且/或者一个将接受的一个网络。 调整神经元的重量和门限,以便第一个产品神经元的产品将是契合(和)网络输入(一,当两输入否则是一个,零),并且第二个产品神经元的产品将是逻辑加法(或)网络输入(调零两输入否则是零,一)。 您能看到有超过将给请求的结果的一个网络。
Now,或许它不那么被复杂化调整重量这样一个小网络,而且此的能力是相当有限的。 如果我们需要数百网络神经元,您怎么会调整重量得到期望产品? 有发现的他们方法,并且我们现在将暴露最共同一个。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cici901122
2010-12-05
知道答主
回答量:10
采纳率:0%
帮助的人:9.2万
展开全部
有重量,每支箭至指定代表信息流。这些权值是乘以每支箭穿过的价值观,给或多或少的讯号强度他们传输。这些神经元就和这个网络的原材料。因为输入神经元只有一个输入,它们的输出将输入,他们收到的乘重量。发生什么事,如果这个重量是负面的?发生什么事,如果这个重量等于零。
这些神经元的输出层收到输出的两条输入神经元,乘以各自的权重,和他们。他们给输出是乘以另一个重量。
现在,将所有的重量等于一个。这意味着信息流量将不受影响。计算网络的输出下列输入:(1,1),(1,0)、(0,1),(0,0)、(- 1,1),(- 1,- 1)。
好。现在,选择重量在0.5,0进去,-0.5随机,使他们在网络。计算为相同的输入输出如上。改变一些体重,看看网络的行为变化。而更重要的重量(如果你改变了重量、输出更加引人注目的解释将改变吗?
现在,假如我们想要一个网络如与我们合作并输出,这样就应该投入逆订购(例句。(0.3,0.7)- >(0.7,0.3)。
这是个很简单的!另一个简单的网络将会在这个世界上,应该输出的输入的两倍。
现在,让我们定阈值的神经元。这是,如果先前的输出(神经元的加权和的投入是大于阈值,输出神经元的神经元的将是一个,而零不然。设置阈值的两个网络已经发展了,看看是否这影响到他们的行为。
现在,假设我们拥有一个网络,将收到为输入0和/或那些只。调整重量和阈值的神经元,使得其中一个触发器的输出将第一个输出神经元之间的连接(而且)的网络的投入
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
诚信1079261190
2010-12-05 · TA获得超过129个赞
知道答主
回答量:191
采纳率:0%
帮助的人:67.9万
展开全部
翻译的都挺好
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式