1个回答
展开全部
【1】韦达定理
tanα + 1/tanα = k
tanα * 1/tanα = (3k^2-13)/3
【2】
tanα + 1/tanα = k = 4 / (3^1/2)
cos(3π+α)+sin(π+α) = -(sin α + cos α) = - 2^(1/2 ) sin ( α+ π/4)
由于3π<α<7π/2, 故sin α + cos α < 0
tanα + 1/tanα = [(sin x)^2 + (cos x)^2] / (sin x * cos x) = 1 / (sin x * cos x) = k
故 sinx * cosx = 1/k
sin α + cos α = - ((sin x)^2 + (cos x)^2 + 2 * sinx * cosx)^(1/2)
= - (1 + 2/k)^(1/2)
tanα + 1/tanα = k
tanα * 1/tanα = (3k^2-13)/3
【2】
tanα + 1/tanα = k = 4 / (3^1/2)
cos(3π+α)+sin(π+α) = -(sin α + cos α) = - 2^(1/2 ) sin ( α+ π/4)
由于3π<α<7π/2, 故sin α + cos α < 0
tanα + 1/tanα = [(sin x)^2 + (cos x)^2] / (sin x * cos x) = 1 / (sin x * cos x) = k
故 sinx * cosx = 1/k
sin α + cos α = - ((sin x)^2 + (cos x)^2 + 2 * sinx * cosx)^(1/2)
= - (1 + 2/k)^(1/2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询