大家帮我解析这个常微分方程,要详细的过程。尤其是右边怎么积分
d(x+y)/(x+y)=[p(t)+q(t)]dtd(x-y)/(x-y)=[p(t)-q(t)]dt...
d(x+y)/(x+y)=[p(t)+q(t)]dt
d(x-y)/(x-y)=[p(t)-q(t)]dt 展开
d(x-y)/(x-y)=[p(t)-q(t)]dt 展开
1个回答
展开全部
定义e²=exp(2)即e^x=exp(x)
d(x+y)/(x+y)=[p(t)+q(t)]dt
d(x-y)/(x-y)=[p(t)-q(t)]dt
积分得
ln(x+y)=∫[p(t)+q(t)]dt
ln(x-y)=∫[p(t)-q(t)]dt
(x+y)=exp(∫[p(t)+q(t)]dt)
(x-y)=exp(∫[p(t)-q(t)]dt)
x=1/2{exp(∫[p(t)+q(t)]dt)+exp(∫[p(t)-q(t)]dt)}
y=1/2{exp(∫[p(t)+q(t)]dt)-exp(∫[p(t)-q(t)]dt)}
d(x+y)/(x+y)=[p(t)+q(t)]dt
d(x-y)/(x-y)=[p(t)-q(t)]dt
积分得
ln(x+y)=∫[p(t)+q(t)]dt
ln(x-y)=∫[p(t)-q(t)]dt
(x+y)=exp(∫[p(t)+q(t)]dt)
(x-y)=exp(∫[p(t)-q(t)]dt)
x=1/2{exp(∫[p(t)+q(t)]dt)+exp(∫[p(t)-q(t)]dt)}
y=1/2{exp(∫[p(t)+q(t)]dt)-exp(∫[p(t)-q(t)]dt)}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询