求下列微分方程的通解
1个回答
展开全部
求微分方程 2y''+y'-y=2e^x的通解
解:齐次方程2y''+y'-y=0的特征方程 2r²+y-1=(2r-1)(r+1)=0的根:r₁=1/2, r₂=-1;
因此齐次方程的通解为:y=C₁e^(x/2)+C₂e^(-x).
设原方程的特解为:y*=ae^x;则 y*'=ae^x;y''=ae^x;
代入原式得:2ae^x+ae^x-ae^x=2ae^x,∴a=1.
故特解y*=e^x;
于是得原方程的通解为:y=C₁e^(x/2)+C₂e^(-x)+e^x.
解:齐次方程2y''+y'-y=0的特征方程 2r²+y-1=(2r-1)(r+1)=0的根:r₁=1/2, r₂=-1;
因此齐次方程的通解为:y=C₁e^(x/2)+C₂e^(-x).
设原方程的特解为:y*=ae^x;则 y*'=ae^x;y''=ae^x;
代入原式得:2ae^x+ae^x-ae^x=2ae^x,∴a=1.
故特解y*=e^x;
于是得原方程的通解为:y=C₁e^(x/2)+C₂e^(-x)+e^x.
更多追问追答
追问
请问,特解为什么要设成y*=ae^x?
追答
特解为什么设成y*=ae^x ?说来话长。
常系数非齐次线性二阶微分方程:y''+py'+qy=f(x)
的特解要根据方程右边的函数f(x)的情况来设。这里
问题很多,不是几句话就能说清楚的,你还是自己
看看常微分方程的书吧!好不好?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询