等腰梯形性质
1、等腰梯形同一底上的两个内角相等。
2、两腰相等,两底平行,对角线相等 。
3、由托勒密定理可得等腰梯形ABCD,有AB×CD+BC×AD=AC×BD。
4、中位线长是上下底边长度和的一半。
5、两条对角线相等,是轴对称图形,只有一条对称轴,上底和下底的中垂线就是它的对称轴。
6、对角线分成的四个三角形有3对全等形, 一对相似形。
7、等腰梯形的面积公式:S=(上底+下底)×高×1/2。
8、特殊面积计算:当对角线垂直时:S=(BD×AC)/2 。
9、等腰梯形对角线的平方等于腰的平方与上、下底积的和。
BD²=AC²=AB²+AD·BC=CD²+AD·BC
等腰梯形面积公式
梯形的面积=(上底+下底)×高/2;
用“a”、“b”、“h”分别表示梯形的上底、下底、高,“S”表示梯形的面积
则S=(a+b)h/2。
特殊情况:
1.若对角线互相垂直,则面积为1/2两对角线的乘积。
2.在已知中位线情况下,中位线乘高。(中位线等于(a+b)/2)
等腰梯形周长公式
等腰梯形的周长=上底+下底+2×腰 。
用“a”、“b”、“c”分别表示梯形的上底、下底、两腰,“C”表示等腰梯形的周长,则C=a+b+2c 。
等腰梯形的判定
1、同一底上的两个角相等的梯形是等腰梯形。
2、一组对边相等,另一组对边平行的四边形是等腰梯形。
以下判定不作为定理使用:
3、对角线相等且能形成两个等腰三角形的四边形是等腰梯形。
4、对角互补的梯形是等腰梯形。
5、对角线相等的梯形是等腰梯形。
你说的我不清楚啊,不要告诉我勾股定理。我不会,麻烦你说清楚点好嘛?