用洛必达法则求极限:lim(x→0)(ln sin3x)/(ln sinx) 要有详细过程哦、、谢谢了
4个回答
展开全部
lim(x→0)(ln sin3x)/(ln sinx) =lim(x→0)(ln sin3x)导数/(ln sinx) 导数
=lim(x→0)(3cos3X/sin3X )/(cosX/sinX) =lim(x→0)[(3sinx /sin3x)(cos3X/cosX) ]
=lim(x→0)(3sinx /sin3x)lim(x→0) (cos3X/cosX)=3lim(x→0)(sinx /sin3x)
=lim(x→0)(3x /sin3x) lim(x→0)(sinx /x)=1
=lim(x→0)(3cos3X/sin3X )/(cosX/sinX) =lim(x→0)[(3sinx /sin3x)(cos3X/cosX) ]
=lim(x→0)(3sinx /sin3x)lim(x→0) (cos3X/cosX)=3lim(x→0)(sinx /sin3x)
=lim(x→0)(3x /sin3x) lim(x→0)(sinx /x)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询