求解一道数学题(要详细过程)
M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为A.4B.6C.2√2D.4√2(要详细过程)...
M(√3,0),椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B,则△ABM的周长为
A.4 B.6 C.2√2 D.4√2 (要详细过程) 展开
A.4 B.6 C.2√2 D.4√2 (要详细过程) 展开
3个回答
展开全部
我觉得4个选项都不对,△ABM的周长为8。
椭圆: x^2/4+y^2=1
a^2 = 4 , b^2=1
c^2=a^2 - b^2=4-1=3
c=±√3
∴M为椭圆右焦点F2
椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B
x^2 + (4k^2)(x+√3)^2 = 4
整理后: (1+4k^2)x^2 + (8√3k^2)x + 12k^2 - 4 =0
△=b^2 - 4ac = (8√3k^2)^2 - 4×(1+4k^2)×(12k^2 - 4) = 16k^2+16 =16(k^2+1)>0
由此可得:无论k取何值,直线与椭圆总有两个交点且直线一定过点(-√3 , 0),即椭圆的左焦点F1
因此,根据椭圆的定义:
△ABM的周长=AM+AB+BM=(AF1+AF2)+(BF1+BF2)=2a+2a=4a=8
椭圆: x^2/4+y^2=1
a^2 = 4 , b^2=1
c^2=a^2 - b^2=4-1=3
c=±√3
∴M为椭圆右焦点F2
椭圆x^2/4+y^2=1与直线y=k(x+√3)交于点A,B
x^2 + (4k^2)(x+√3)^2 = 4
整理后: (1+4k^2)x^2 + (8√3k^2)x + 12k^2 - 4 =0
△=b^2 - 4ac = (8√3k^2)^2 - 4×(1+4k^2)×(12k^2 - 4) = 16k^2+16 =16(k^2+1)>0
由此可得:无论k取何值,直线与椭圆总有两个交点且直线一定过点(-√3 , 0),即椭圆的左焦点F1
因此,根据椭圆的定义:
△ABM的周长=AM+AB+BM=(AF1+AF2)+(BF1+BF2)=2a+2a=4a=8
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
M为椭圆右焦点,由题目知,K为不等于0的任意值都得到△ABM,不妨设A、B为短轴端点,则易知△ABM的周长为6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询