在△ABC中,若sinC=2sin(B+C)cosB,判断△ABC的形状

飞翔的馍馍头
2010-12-10 · TA获得超过1741个赞
知道小有建树答主
回答量:1341
采纳率:0%
帮助的人:693万
展开全部
sinC=2sin(B+C)cosB
C=pi-(A+B)
A=pi-(C+B)
则有:
sin(A+B)=2sinAcosB
则有:
sinAcosB+cosAsinB=2sinAcosB
所以:
sinAcosB-coaAsinB=0
所以:
sin(A-B)=0
因为A,B,C是三角形的内角,所以
A=B
三角形ABC是等腰三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式