一道数列的问题

An=9A(n-1)+12(A(n-1))^(1/2)+4求An的通项公式... An=9A(n-1)+12(A(n-1))^(1/2)+4
求An的通项公式
展开
圣地恶法
2010-12-10 · TA获得超过838个赞
知道小有建树答主
回答量:419
采纳率:100%
帮助的人:482万
展开全部
由An=9A(n-1)+12(A(n-1))^(1/2)+4得:
An=(3(A(n-1))^(1/2)+2)^2 两边开方,得:
(An)^(1/2)=3(A(n-1))^(1/2)+2
设Bn=(An)^(1/2),即
Bn+1=3(B(n-1)+1)
再设Cn=Bn+1,可得
Cn=3C(n-1)
由上式知,Cn是等比数列,容易得
Cn=3^(n-1)C1 随后遂一兑换并整理便可得通项公式:
Bn+1=3^(n-1)(B1+1)
(An)^(1/2)+1=3^(n-1)((A1)^(1/2)+1) 然后整理该式
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式