数学 不等式证明 急 求解。
已知x,y,z是正数。若x/(x+2)+y/(y+2)+z/(z+2)=1求证x^2/(x+2)+y^2/(y+2)+z^2/(z+2)>=1...
已知x,y,z 是正数。
若 x/(x+2) +y/(y+2) +z/(z+2) =1
求证 x^2/(x+2) +y^2/(y+2) +z^2/(z+2) >=1 展开
若 x/(x+2) +y/(y+2) +z/(z+2) =1
求证 x^2/(x+2) +y^2/(y+2) +z^2/(z+2) >=1 展开
4个回答
展开全部
x(1/x+2)+y(1/y+2)++z(1/z+2)=1
因为 x,y,z>0
所以
x*x(1/x+2)+y*y(1/y+2)+z*z(1/z+2)>=1
因为 x,y,z>0
所以
x*x(1/x+2)+y*y(1/y+2)+z*z(1/z+2)>=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为x/(x+2) +y/(y+2) +z/(z+2) =1
而1/(x+2) +1/(y+2) +1/(z+2) +(x/(x+2) +y/(y+2) +z/(z+2))/2=3/2
故1/(x+2) +1/(y+2) +1/(z+2) =1
由柯西不等式
1
=x/(x+2) +y/(y+2) +z/(z+2)
=[x/√(x+2) ]*[1/√(x+2)]+[y/√(y+2)]*[1/√(y+2)] +[z/√(z+2)]*[1/√(z+2)]
≤[x^2/(x+2) +y^2/(y+2) +z^2/(z+2)][1/(x+2) +1/(y+2) +1/(z+2)]
=x^2/(x+2) +y^2/(y+2) +z^2/(z+2)
得证
而1/(x+2) +1/(y+2) +1/(z+2) +(x/(x+2) +y/(y+2) +z/(z+2))/2=3/2
故1/(x+2) +1/(y+2) +1/(z+2) =1
由柯西不等式
1
=x/(x+2) +y/(y+2) +z/(z+2)
=[x/√(x+2) ]*[1/√(x+2)]+[y/√(y+2)]*[1/√(y+2)] +[z/√(z+2)]*[1/√(z+2)]
≤[x^2/(x+2) +y^2/(y+2) +z^2/(z+2)][1/(x+2) +1/(y+2) +1/(z+2)]
=x^2/(x+2) +y^2/(y+2) +z^2/(z+2)
得证
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询