点A,B,C分别是圆O上的点,∠B=60°,AC=3,CD是圆O上的直径,P是CD延长线上的一点,
展开全部
(1)连接OA.
∵∠B=60°,
∴∠AOC==120°,
又∵OA=OC,
∴∠ACO=∠OAC=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,又∵OA为半径
∴AP是⊙O的切线,
(2)解:连接AD.
∵CD是⊙O的直径,
∴∠CAD=90°,
∴AD=AC•tan30°=3×根号3/3=根号3
∵∠ADC=∠B=60°,
∴∠PAD=30°,
∵∠P=∠PAD,
∴PD=AD=根号3
∵∠B=60°,
∴∠AOC==120°,
又∵OA=OC,
∴∠ACO=∠OAC=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,又∵OA为半径
∴AP是⊙O的切线,
(2)解:连接AD.
∵CD是⊙O的直径,
∴∠CAD=90°,
∴AD=AC•tan30°=3×根号3/3=根号3
∵∠ADC=∠B=60°,
∴∠PAD=30°,
∵∠P=∠PAD,
∴PD=AD=根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询