如图所示,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,BC切
如图所示,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,BC切圆O于点B交DE的延长线于点C(1)求证:OC⊥OD(2)若AB=2√5,AD=2,求线段B...
如图所示,AB为圆O的直径,AD与圆O相切于点A,DE与圆O相切于点E,BC切圆O于点B交DE的延长线于点C
(1)求证:OC⊥OD
(2)若AB=2√5,AD=2,求线段BC和CD的长 展开
(1)求证:OC⊥OD
(2)若AB=2√5,AD=2,求线段BC和CD的长 展开
2个回答
2013-12-30
展开全部
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
1.证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
2.过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
夕资工业设备(上海)
2024-12-11 广告
2024-12-11 广告
夕资工业设备(上海)有限公司的读数头315420-04是一款高性能的测量 device,专为工业环境中的精确测量而设计。这款读数头具有高分辨率和高稳定性,能够提供准确的测量数据,是保证产品质量和生产效率的重要工具。此外,该读数头还具有易于安...
点击进入详情页
本回答由夕资工业设备(上海)提供
展开全部
证明:连结OC因为CE=CB,半径OE=OB,OC是公共边所以 △OEC ≌ △OBC (SSS)则∠OEC=∠OBC又DE与圆O相切于点E,即∠OEC=90°则∠OBC=90°所以BC是圆O的切线,且以点B为切点。2.这一小题可利用直角三角形勾股定理来求BC的长,利用相似三角形来求EG的长。不过过程比较兜转,你不妨试着去做做看,基本上要用到圆的切线的相关概念和性质。
过点D作DF⊥BC于点F,连OE、OC,
则四边形ABFD是矩形,BF=AD=2,DF=AB=2倍的根号5.
∵AD、DC、BC分别切⊙O于点A、E、B,
∴DA=DE,CE=CB.
设BC为x,则CF=x-2,DC=x+2.
在Rt△DFC中,
(x+2)^2-(x-2)^2=(2倍的根号5)^2,
解得x= 5/2.
∴BC= 5/2.
∵AD//BC
∴∠ADE=GCE,∠DAE=∠G
∴△ADE、GCE相似
∴AE/GE=DE/CE
∴AE/GE=2/ 5/2
既AE:GE=4:5
根据勾股定理
AG^2=AB^2+BG^2
∴AG=3倍的根号5
AE:GE=4:5
∴AE=4倍的根号5/3
GE=5倍的根号5/3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询