如图,圆o是三角形abc的外接圆.ab是圆o的直径,d为圆o上一点,od垂直ac,垂足为e,连接b
如图,圆o是三角形abc的外接圆.ab是圆o的直径,d为圆o上一点,od垂直ac,垂足为e,连接bd【2】当角odb等于30°时,求证bc=od...
如图,圆o是三角形abc的外接圆.ab是圆o的直径,d为圆o上一点,od垂直ac,垂足为e,连接bd
【2】当角odb等于30°时,求证bc=od 展开
【2】当角odb等于30°时,求证bc=od 展开
4个回答
展开全部
证明: (1) ∵OD⊥AC OD为半径∴
∴∠CBD=∠ABD ∴BD平分∠ABC
(2) ∵OB=OD∴∠OBD=∠ODB=30°∴∠AOD=∠OBD+∠ODB=30°+30°=60°
又∵OD⊥AC于E ∴∠OEA=90°∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°
又∵AB为⊙O的直径 ∴∠ACB=90°则在Rt△ACB中BC=AB ∵OD=AB ∴BC=OD
∴∠CBD=∠ABD ∴BD平分∠ABC
(2) ∵OB=OD∴∠OBD=∠ODB=30°∴∠AOD=∠OBD+∠ODB=30°+30°=60°
又∵OD⊥AC于E ∴∠OEA=90°∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°
又∵AB为⊙O的直径 ∴∠ACB=90°则在Rt△ACB中BC=AB ∵OD=AB ∴BC=OD
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠b=2∠obd=60º=∠ocb
∠cob=180-2×60=60º
∴等边三角形ocb
∴bc=ob=od
∠cob=180-2×60=60º
∴等边三角形ocb
∴bc=ob=od
追问
这个我就是看不懂才提问的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-29
展开全部
如图,圆o是三角形abc的外接圆.ab是圆o的直径,d为圆o...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询