二次函数压轴题,求高人,望详解= =
(2009,江津)如图1所示,抛物线与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式.(2)如图2所示,设(1)中的抛物线交y轴于C点,在该抛物线的对...
(2009,江津)如图1所示,抛物线与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式.
(2)如图2所示,设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC最大?若存在,求出点P的坐标及△PBC的最大值,若不存在,请说明理由;
已知条件补充:抛物线为y=-x^2+bx+c
感谢一楼提醒= = 展开
(1)求该抛物线的解析式.
(2)如图2所示,设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC最大?若存在,求出点P的坐标及△PBC的最大值,若不存在,请说明理由;
已知条件补充:抛物线为y=-x^2+bx+c
感谢一楼提醒= = 展开
展开全部
题目已知条件缺,抛物线y=-x^2+bx+c
(1)与x轴的两个交点x1=-3,x2=1
b=x1+x2=-2
c=-x1*x2=3
抛物线y=-x^2-2x+3
(2)沿着抛物线对称轴作C的轴对称点D,连接AD与对称轴交点Q,此时QA+QC最小,AC长度固定,相应△QAC周长最小,Q(-1,2)
(3)从P点作y轴平行线交x轴于E点,四边形BPCO的面积等于△PBE和梯形PCOE的面积之和,△PBC的面积S等于四边形BPCO的面积减去△BCO;
S=-3/2*(Xp-3/2)²+27/8
Xp=3/2时面积S最大,Smax=27/8
P(-1.5,-2.25)
(1)与x轴的两个交点x1=-3,x2=1
b=x1+x2=-2
c=-x1*x2=3
抛物线y=-x^2-2x+3
(2)沿着抛物线对称轴作C的轴对称点D,连接AD与对称轴交点Q,此时QA+QC最小,AC长度固定,相应△QAC周长最小,Q(-1,2)
(3)从P点作y轴平行线交x轴于E点,四边形BPCO的面积等于△PBE和梯形PCOE的面积之和,△PBC的面积S等于四边形BPCO的面积减去△BCO;
S=-3/2*(Xp-3/2)²+27/8
Xp=3/2时面积S最大,Smax=27/8
P(-1.5,-2.25)
2010-12-11
展开全部
(2) Q( (根号109-7)/6,(根号109+17)/18 )
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询