无穷小乘以无穷大数等于多少?
5个回答
展开全部
无穷小+无穷大仍是无穷大,无穷小乘以无穷大没有意义。
正无穷大+正无穷大 = 正无穷大;负无穷大+负无穷大 = 负无穷大;正无穷大+负无穷大没有意义(出现的话要转换成有意义的形态才能求极限)。
无穷大乘以无穷大仍然是无穷大;无穷小乘以无穷小仍然是无穷小;无穷大和无穷小不是有限的常量,不能完全遵守常量的运算法则。
扩展资料:
当x→0时,等价无穷小:
(1)sinx~x
(2)tanx~x
(3)arcsinx~x
(4)arctanx~x
(5)1-cosx~1/2x^2
(6)a^x-1~xlna
(7)e^x-1~x
(8)ln(1+x)~x
(9)(1+Bx)^a-1~aBx
(10)[(1+x)^1/n]-1~1/nx
(11)loga(1+x)~x/lna
展开全部
1.“无穷小乘以无穷大”这个是一个不定型,可能等于一个常数,可能等于无穷大,可能等于无穷小,不能判定,比如(1/x)*x=1(x趋向于无穷大),(1/x²)*x=无穷小(x趋向于无穷小),(1/x)*x²=无穷大(x趋向于无穷大)
2.“正无穷大+负无穷大”这个也是一个不定型,可能等于0,可能等于正无穷大,可能等于负无穷大,不能判定,比如x+(-x)=0(x趋向于正无穷大),x+(-x²)=负无穷大(x趋向于正无穷大),x²+(-x)=正无穷大(x趋向于正无穷大)
2.“正无穷大+负无穷大”这个也是一个不定型,可能等于0,可能等于正无穷大,可能等于负无穷大,不能判定,比如x+(-x)=0(x趋向于正无穷大),x+(-x²)=负无穷大(x趋向于正无穷大),x²+(-x)=正无穷大(x趋向于正无穷大)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2017-12-25
展开全部
无穷小+无穷大 仍是无穷大
无穷小乘以无穷大 没有意义
(如果有式子会出现无穷小乘以无穷大的形式,不能直接求极限,必须要先化成有意义的形式
比如 1/x * x (x→∞),要先化成有意义的形式, 1/x * x = 1 。之后才行,但已经不是无穷小乘以无穷大的形式了,无穷小乘以无穷大的问题就不存在了。)
正无穷大+正无穷大 = 正无穷大
负无穷大+负无穷大 = 负无穷大
正无穷大+负无穷大 没有意义(出现的话要转换成有意义的形态才能求极限)
无穷大乘以无穷大仍然是无穷大
无穷小乘以无穷小仍然是无穷小
无穷大和无穷小不是有限的常量,不能完全遵守常量的运算法则
无穷小乘以无穷大 没有意义
(如果有式子会出现无穷小乘以无穷大的形式,不能直接求极限,必须要先化成有意义的形式
比如 1/x * x (x→∞),要先化成有意义的形式, 1/x * x = 1 。之后才行,但已经不是无穷小乘以无穷大的形式了,无穷小乘以无穷大的问题就不存在了。)
正无穷大+正无穷大 = 正无穷大
负无穷大+负无穷大 = 负无穷大
正无穷大+负无穷大 没有意义(出现的话要转换成有意义的形态才能求极限)
无穷大乘以无穷大仍然是无穷大
无穷小乘以无穷小仍然是无穷小
无穷大和无穷小不是有限的常量,不能完全遵守常量的运算法则
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义最重要,什么是无穷小?什么是无穷大?相信楼主不甚了解。无穷小是个简称,全称是函数在X趋向于某个数或X趋向于正负无穷时,极限为0。无穷大类似。所以无穷小实质上是 函数加极限 的形式。比如说F(X)=X这个函数,当X->0时才能称的上是无穷小。如果笼统的说F(X)=X是无穷小则是错的。再来说无穷小或者无穷大的数学运算:第一个必要条件是两个函数的自变量必须要趋于同一个过程才能运算。所以无穷小乘以无穷大写成数学式就是F(X)X*G(X)在相应的使他们俩成为无穷小和无穷大的过程中,极限存不存在的问题。实际上就是求极限。明白了否?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
负无穷乘正无穷吗?
追答
我不是很懂的,但是我是这么想。正数乘负数一定是负数,而且正无穷绝对值无限大,它乘负无穷两者都是无穷大的绝对值。结果应该是-∞
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询