如图,高一数学题,函数变形。
5个回答
展开全部
令t=(1+x)/(1-x)
则x=(t-1)/(t+1)
代入原等式得:
f(t)=[1+(t-1)^2/(t+1)^2]/[1-(t-1)^2/(t+1)^2]
=[(t+1)^2+(t-1)^2]/[(t+1)^2-(t-1)^2]
=2(t^2+1)/(4t)
=(t^2+1)/(2t)
故f(x)=(x^2+1)/(2x)
则x=(t-1)/(t+1)
代入原等式得:
f(t)=[1+(t-1)^2/(t+1)^2]/[1-(t-1)^2/(t+1)^2]
=[(t+1)^2+(t-1)^2]/[(t+1)^2-(t-1)^2]
=2(t^2+1)/(4t)
=(t^2+1)/(2t)
故f(x)=(x^2+1)/(2x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:换元法令t=(1+x)/(1-x)
则x=(t-1)/(t+1)
代入原等式得:
f(t)=[1+(t-1)^2/(t+1)^2]/[1-(t-1)^2/(t+1)^2]
=[(t+1)^2+(t-1)^2]/[(t+1)^2-(t-1)^2]
=2(t^2+1)/(4t)
=(t^2+1)/(2t)
即:f(x)=(x^2+1)/(2x)
希望对你有所帮助,还望采纳~~
则x=(t-1)/(t+1)
代入原等式得:
f(t)=[1+(t-1)^2/(t+1)^2]/[1-(t-1)^2/(t+1)^2]
=[(t+1)^2+(t-1)^2]/[(t+1)^2-(t-1)^2]
=2(t^2+1)/(4t)
=(t^2+1)/(2t)
即:f(x)=(x^2+1)/(2x)
希望对你有所帮助,还望采纳~~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
换元发
令t=(1-x)/(1+x)
(1+x)t=1-x
tx+x=1-t
x=(1-t)/(1+t)
f(t)
=(1-x²)/(1+x²)
=[1-(1-t)²/(1+t)²]/[1+(1-t)²/(1+t)²]
=[(1+t)²-(1-t)²]/[(1+t)²+(1-t)²]
=[(1+2t+t²)-(1-2t+t²)]/[(1+2t+t²)+(1-2t+t²)]
=(4t)/(2+2t²)
=2t/(1+t²)
将t换回x,即得
f(x)=2x/(1+x²)
令t=(1-x)/(1+x)
(1+x)t=1-x
tx+x=1-t
x=(1-t)/(1+t)
f(t)
=(1-x²)/(1+x²)
=[1-(1-t)²/(1+t)²]/[1+(1-t)²/(1+t)²]
=[(1+t)²-(1-t)²]/[(1+t)²+(1-t)²]
=[(1+2t+t²)-(1-2t+t²)]/[(1+2t+t²)+(1-2t+t²)]
=(4t)/(2+2t²)
=2t/(1+t²)
将t换回x,即得
f(x)=2x/(1+x²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令t=(1+x)/(1-x)得x=(t-1)/(t+1)代入上式得f(t)=(t*t+1)/2t,再把t换成X就行
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询