填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.(1)如图①,若∠BAC=60°,则∠...
填空或解答:点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.(1)如图①,若∠BAC=60°,则∠AFB=______;如图②,若∠BAC=90°,则∠AFB=______;(2)如图③,若∠BAC=α,则∠AFB=90°?12α90°?12α(用含α的式子表示);(3)将图③中的△ABC绕点C旋转(点F不与点A、B重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°?12α;在图⑤中,∠AFB与∠α的数量关系是∠AFB=90°+12α∠AFB=90°+12α.请你任选其中一个结论证明.
展开
展开全部
(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,
∴△ABC∽△EDC,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD
=180°-∠BAC-∠ABC
=∠ACB,
∴∠AFB=60°,
同理可得帆模做:∠AFB=45°;码缺
(2)∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
=
,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
α,态衡
∴∠AFB=90°-
α.
故答案为:∠AFB=90°?
α.
(3)图4中:∠AFB=90°?
α;
图5中:∠AFB=90°+
α.
∠AFB=90°?
α的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
=
,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
α,
∴∠AFB=90°-
α.
∠AFB=90°+
α的证明如下:
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
=
,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠BDC=∠AEC,
∴∠AFB=∠BDC+∠CDE+∠DEF,
=∠CDE+∠CED=180°-∠DCE,
∵AB=AC,EC=ED,∠BAC=∠DEC=α,
∴∠DCE=90°-
α,
∴∠AFB=180°-(90°-
α)=90°+
α.
∴△ABC∽△EDC,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD
=180°-∠BAC-∠ABC
=∠ACB,
∴∠AFB=60°,
同理可得帆模做:∠AFB=45°;码缺
(2)∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC |
DC |
AC |
EC |
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
1 |
2 |
∴∠AFB=90°-
1 |
2 |
故答案为:∠AFB=90°?
1 |
2 |
(3)图4中:∠AFB=90°?
1 |
2 |
图5中:∠AFB=90°+
1 |
2 |
∠AFB=90°?
1 |
2 |
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC |
DC |
AC |
EC |
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD,
=180°-∠BAC-∠ABC=∠ACB,
∵AB=AC,∠BAC=α,
∴∠ACB=90°-
1 |
2 |
∴∠AFB=90°-
1 |
2 |
∠AFB=90°+
1 |
2 |
∵AB=AC,EC=ED,∠BAC=∠CED,
∴△ABC∽△EDC,
∴∠ACB=∠ECD,
BC |
DC |
AC |
EC |
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠BDC=∠AEC,
∴∠AFB=∠BDC+∠CDE+∠DEF,
=∠CDE+∠CED=180°-∠DCE,
∵AB=AC,EC=ED,∠BAC=∠DEC=α,
∴∠DCE=90°-
1 |
2 |
∴∠AFB=180°-(90°-
1 |
2 |
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询