已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0)则数列{xn}的前2010项的

已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0)则数列{xn}的前2010项的和S2010为()A.1... 已知数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0)则数列{xn}的前2010项的和S2010为(  )A.1340B.1338C.670D.669 展开
 我来答
手机用户46515
2015-01-16 · 超过62用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:114万
展开全部
因为数列{xn}满足xn+3=xn,xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),
所以x3=|a-1|=1-a,x4=x1=1,所以数列是以3为周期的周期数列,
并且x1+x2+x3=1+1-a+a=2,
所以S2010=x1+x2+x3+…+xn=670(x1+x2+x3)=1340.
故选A.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式