已知抛物线y=a(x-m) 2 +n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物... 已知抛物线y=a(x-m) 2 +n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。 (1)如图1,求抛物线y=(x-2) 2 +1的伴随直线的解析式;(2)如图2,若抛物线y=a(x-m) 2 +n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;(3)如图3,若抛物线y=a(x-m) 2 +n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。①用含b的代数式表示m、n的值;②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。 展开
 我来答
手机用户93790
推荐于2016-01-24 · TA获得超过165个赞
知道答主
回答量:132
采纳率:0%
帮助的人:125万
展开全部

解:(1)由已知得B(2,1),A(0,5),
设所求直线的解析式为y=kx+b,则 ,解得
∴所求直线的解析式为y=-2x+5;
(2)如图1,作BE⊥AC于点E,由题意得四边形ABCD是平行四边形,点A的坐标为(0,-3),点C的坐标为(0,3),可得AC=6,
∵□ABCD的面积为12,
∴S △ABC =6,即S △ABC = AC·BE=6,
∴BE=2,
∵m>0,即顶点B在y轴的右侧,且在直线y=x-3上,
∴顶点B的坐标为B(2,-1)又抛物线经过点A(0,-3),
∴a=-
∴y=- (x-2) 2 -1;
(3)①如图2,作BE⊥x轴于点E,
由已知得:A的坐标为(0,b),C的坐标为(0,-b),
∵顶点B(m,n)在直线y=-2x+b上,
∴n=-2m+b,即点B的坐标为(m,-2m+b),
在矩形ABCD中,OC=OB,OC 2 =OB 2
即b 2 =m 2 +(-2m+b) 2
∴5m 2 -4mb=0,
∴m(5m-4b)=0,
∴m 1 =0(不合题意,舍去),m 2 = b,
∴n=-2m+b=-2× b+b=- b;
②存在,共四个点如下:
P 1 b, b),P 2 b, b),P 3 b, b),P 4 b,- b)。



图2

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式