已知函数f(x)=㏒ a x(a>0且a≠1),若数列2,f(a 1 ),f(a 2 ),…,f(a n ),2n+4(n∈N * )
已知函数f(x)=㏒ax(a>0且a≠1),若数列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)成等差数列(1)求数列{an}的通项an;(2)令bn=...
已知函数f(x)=㏒ a x(a>0且a≠1),若数列2,f(a 1 ),f(a 2 ),…,f(a n ),2n+4(n∈N * )成等差数列(1)求数列{a n }的通项a n ;(2)令b n =a n f(a n ),当a>1时,判断数列{b n }的单调性并证明你的结论.
展开
1个回答
展开全部
(1)∵数列2,f(a 1 ),f(a 2 ),…,f(a n ),2n+4(n∈N * )成等差数列 ∴2n+4=2+(n+1)d,∴d=2, ∴f(a n )=2+2n=log a a n , ∴a n =a 2n+2 (2)数列{b n }单调递增 证明:∵b n =a n f(a n ), ∴b n =(2n+2)a 2n+2 , 则b n+1 =(2n+4)a 2n+4 , ∴b n+1 -b n =(2n+4)a 2n+4 -(2n+2)a 2n+2 =a 2n+2 [(2n+4)a 2 -(2n+2)] ∵a>1 ∴a 2 >1 ∴(2n+4)a 2 -(2n+2)>(2n+4)-(2n+2)=2>0 ∴b n+1 -b n >0即数列{b n }单调递增. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询