如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB中点,连接DF、EF,DE、EF与AC

如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB中点,连接DF、EF,DE、EF与AC交于点O,DE与AB交于点G,连接OG,若∠... 如图,分别以Rt△ABC的斜边AB、直角边AC为边向外作等边△ABD和△ACE,F为AB中点,连接DF、EF,DE、EF与AC交于点O,DE与AB交于点G,连接OG,若∠BAC=30°,下列结论:①△DBF≌△EFA;②AD=AE;③EF⊥AC;④AD=4AG;⑤△AOG与△EOG的面积比为1:4.其中正确的结论的序号是______. 展开
 我来答
小小小峋289
2015-01-03 · 超过59用户采纳过TA的回答
知道答主
回答量:103
采纳率:0%
帮助的人:138万
展开全部
∵△ACE是等边三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F为AB的中点,
∴AB=2AF,
∴BC=AF,
在△ABC和△EFA中
AC=AE
∠ACB=∠EAF
BC=AF

∴△ABC≌△EFA(SAS),
∴FE=AB,∠AEF=∠BAC=30°,
∠AOE=180°-30°-60°=90°,
∴EF⊥AC,∴③正确,
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
在△DBF和△EFA中
∠BDF=∠FEA
∠DFB=∠EAF
BF=AF

∴△DBF≌△EFA(AAS),∴①正确;
∴AE=DF,
∵FE=AB,
∴四边形ADFE为平行四边形,
∴AG=
1
2
AF,AG=
1
4
AB,
∵AD=AB,
则AD=4AG,∴④正确;
∵四边形ADFE为平行四边形,
∴AD=EF,
∵∠FAE=90°,∠AFE<90°,
∴EF>AE,
即AD>AE,∴②错误;
∵四边形ADFE为平行四边形,
∴AG=GF,
∴S三角形AGO=S三角形GOF
设AG=1,则AF=2,AB=4,BC=2,由勾股定理得:AC=2
3

∠CAE=60°,∠AEF=∠CAB=30°,
∴∠COE=30°+60°=90°=∠AOE,
∵AE=CE,
∴AO=OC,
在等边三角形ACE中,AE=AC=2
3
,AO=OC=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消