已知数列{an}满足a1=3,anan-1=2an-1-1.(1)求a2,a3,a4;(2)求证:数列{1an?1}是等差数列,并求出{

已知数列{an}满足a1=3,anan-1=2an-1-1.(1)求a2,a3,a4;(2)求证:数列{1an?1}是等差数列,并求出{an}的通项公式.(3)若bn=(... 已知数列{an}满足a1=3,anan-1=2an-1-1.(1)求a2,a3,a4;(2)求证:数列{1an?1}是等差数列,并求出{an}的通项公式.(3)若bn=(2n?1)2nan,求{bn}的前n项和Tn. 展开
 我来答
果乐天03W
2015-01-17 · 超过53用户采纳过TA的回答
知道答主
回答量:168
采纳率:100%
帮助的人:110万
展开全部
(1)∵a1=3,anan-1=2an-1-1.
当n=2时,a2a1=2a1-1,即a2=2-
1
a1
=
5
3

当n=3时,a3a2=2a2-1,即a3=2-
1
a2
=
7
5

当n=4时,a4a3=2a3-1,即a4=2-
1
a3
=
9
7

证明:(2)由题意得an≠0且an≠1
∵anan-1=2an-1-1.
∴(an-1-1)-(an-1)=(an-1-1)(an-1)
1
an?1
-
1
a?1 ?1
=1
∴数列{
1
an?1
}
是以
1
2
为首项,以1为公式差的等差数列
1
an?1
1
2
+n?1=n?
1
2

an
2
2n?1
+1=
2n+1
2n?1

解:(3)由(2)得:bn=(2n+1)2n
∴Tn=3?2+5?22+7?23+…+(2n+1)2n…①
∴2Tn=3?22+7?23+…+(2n-1)2n+(2n+1)2n+1…②
②-①得:Tn=(2n?1)2n+1+2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式