2个回答
展开全部
设x+y=3t,x2-xy+y2=7t(其中t为整数),
∴3xy=(x+y)2-(x2-xy+y2)=9t2-7t,
∴7(x+y)=3(x2-xy+y2)≥3(x2-2xy+y2)=3(x-y)2≥0,
?x+y≥0,
∴t≥0,
∵(x-y)2=x2-xy+y2-xy=-
,
∴t是3的倍数,于是,设t=3k,
则(x-y)2=28k-27k2=k(28-27k)≥0,
又∵k≥0,
∴k=0或1,
①当k=0时,x+y=0,即x=-y代入x2-xy+y2=0,
解得x=0、y=0;
②当k=1时,则x-y=±1,x+y=3t=9k=9,
解得x=4、y=5或x=5、y=4.
答:原方程的解为x=0、y=0,x=5,y=4或x=4,y=5.
∴3xy=(x+y)2-(x2-xy+y2)=9t2-7t,
∴7(x+y)=3(x2-xy+y2)≥3(x2-2xy+y2)=3(x-y)2≥0,
?x+y≥0,
∴t≥0,
∵(x-y)2=x2-xy+y2-xy=-
28t?9t2 |
3 |
∴t是3的倍数,于是,设t=3k,
则(x-y)2=28k-27k2=k(28-27k)≥0,
又∵k≥0,
∴k=0或1,
①当k=0时,x+y=0,即x=-y代入x2-xy+y2=0,
解得x=0、y=0;
②当k=1时,则x-y=±1,x+y=3t=9k=9,
解得x=4、y=5或x=5、y=4.
答:原方程的解为x=0、y=0,x=5,y=4或x=4,y=5.
展开全部
(x+y)/(x^2-xy+y^2)=3/7
设x+y=3t
x^2-xy+y^2=7t
t为整数
于是
x^2+2xy+y^2=9t^2
3xy=9t^2-7t
(x-y)^2=(28t-9t^2)/3
则t是3的倍数,于是,设t=3k
则(x-y)^2=28k-27k^2=k(28-27k)≥0
又k是整数,于是k=0或1
当k=0时,分母为0,舍弃,于是k=1
则x-y=±1,x+y=3t=9k=9
x=4,y=5或x=5,y=4
设x+y=3t
x^2-xy+y^2=7t
t为整数
于是
x^2+2xy+y^2=9t^2
3xy=9t^2-7t
(x-y)^2=(28t-9t^2)/3
则t是3的倍数,于是,设t=3k
则(x-y)^2=28k-27k^2=k(28-27k)≥0
又k是整数,于是k=0或1
当k=0时,分母为0,舍弃,于是k=1
则x-y=±1,x+y=3t=9k=9
x=4,y=5或x=5,y=4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询