
求1/[sinx(cosx)^4]的不定积分
1个回答
展开全部
∫ 1/[sinx(cosx)^4] dx
=∫ sinx/[sin²x(cosx)^4] dx
=-∫ 1/[sin²x(cosx)^4] d(cosx)
=-∫ 1/[(1-cos²x)(cosx)^4] d(cosx)
令cosx=u
=∫ 1/[u^4(u²-1)] du
=∫ (1-u²+u²)/[u^4(u²-1)] du
=∫ (1-u²)/[u^4(u²-1)] du + ∫ u²/[u^4(u²-1)] du
=-∫ 1/u^4 du + ∫ 1/[u²(u²-1)] du
=-∫ 1/u^4 du + ∫ 1/(u²-1) du - ∫ 1/u² du
=1/(3u³) + (1/2)ln|(u-1)/(u+1)| + 1/u + C
=(1/3)sec³x + (1/2)ln|(1-cosx)/(1+cosx)| + secx + C
=∫ sinx/[sin²x(cosx)^4] dx
=-∫ 1/[sin²x(cosx)^4] d(cosx)
=-∫ 1/[(1-cos²x)(cosx)^4] d(cosx)
令cosx=u
=∫ 1/[u^4(u²-1)] du
=∫ (1-u²+u²)/[u^4(u²-1)] du
=∫ (1-u²)/[u^4(u²-1)] du + ∫ u²/[u^4(u²-1)] du
=-∫ 1/u^4 du + ∫ 1/[u²(u²-1)] du
=-∫ 1/u^4 du + ∫ 1/(u²-1) du - ∫ 1/u² du
=1/(3u³) + (1/2)ln|(u-1)/(u+1)| + 1/u + C
=(1/3)sec³x + (1/2)ln|(1-cosx)/(1+cosx)| + secx + C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-04-21 广告
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询