(2011?海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△AD
(2011?海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos...
(2011?海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
展开
悟幻行4458
推荐于2016-11-23
·
超过72用户采纳过TA的回答
知道答主
回答量:196
采纳率:0%
帮助的人:67.4万
关注
解:(1)∵四边形ABCD是菱形, ∴AD=AB,∠ABD=∠CBD= ∠ABC,AD∥BC, ∵∠A=60°, ∴△ABD是等边三角形,∠ABC=120°, ∴AD=BD,∠CBD=∠A=60°, ∵AP=BQ, ∴△BDQ≌△ADP(SAS); (2)过点Q作QE⊥AB,交AB的延长线于E, ∵△BDQ≌△ADP, ∴BQ=AP=2, ∵AD∥BC, ∴∠QBE=60°, ∴QE=QB?sin60°=2× = ,BE=QB?cos60°=2× =1, ∵AB=AD=3, ∴PB=AB﹣AP=3﹣2=1, ∴PE=PB+BE=2, ∴在Rt△PQE中,PQ= = , ∴cos∠BPQ= = = . |
收起
为你推荐: