f(x+y,y/x)=x^2-y^2,求f(x,y)=?
3个回答
展开全部
令
x+y=t (1)
y/x=s (2)
则y=sx,代入(1),得
x(1+s)=t,x=t/(1+s)
从而 y=ts/(1+s)
所以 f(t,s)=x² -y²=t²/(1+s)²-t²s²/(1+s)²=t²(1-s²)/(1+s)²=t²(1-s)/(1+s)
从而f(x,y)=x²(1-y)/(1+y)
http://zuoye.baidu.com/question/81d647fe22e014874ab625f8d01ec001.html
x+y=t (1)
y/x=s (2)
则y=sx,代入(1),得
x(1+s)=t,x=t/(1+s)
从而 y=ts/(1+s)
所以 f(t,s)=x² -y²=t²/(1+s)²-t²s²/(1+s)²=t²(1-s²)/(1+s)²=t²(1-s)/(1+s)
从而f(x,y)=x²(1-y)/(1+y)
http://zuoye.baidu.com/question/81d647fe22e014874ab625f8d01ec001.html
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
y=sx
x=t-y=t-sx
(s+1)x=t
x=t/(s+1)
y=sx=st/(s+1)
f(x+y,y/x)=x²-y²
f(t,s)=[t/(s+1)]²-[st/(s+1)]²
=t²/(s+1)²-s²t²/(s+1)²
=(t²-s²t²)/(s+1)²
=t²(1-s²)/(1+s)²
=t²(1+s)(1-s)/(1+s)²
=t²(1-s)/(1+s)
将t换成x,s换成y,得
f(x,y)=x²(1-y)/(1+y)
x=t-y=t-sx
(s+1)x=t
x=t/(s+1)
y=sx=st/(s+1)
f(x+y,y/x)=x²-y²
f(t,s)=[t/(s+1)]²-[st/(s+1)]²
=t²/(s+1)²-s²t²/(s+1)²
=(t²-s²t²)/(s+1)²
=t²(1-s²)/(1+s)²
=t²(1+s)(1-s)/(1+s)²
=t²(1-s)/(1+s)
将t换成x,s换成y,得
f(x,y)=x²(1-y)/(1+y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
令a=x+y,b=y/x,得x=a/(1+b),y=ab/(1+b)
故f(a,b)=x^2-y^2=[a/(1+b)]^2-[ab/(1+b)]^2
故f(a,b)=x^2-y^2=[a/(1+b)]^2-[ab/(1+b)]^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |