设函数f(x)=2根号3sinxcosx+2cos平方x-1(x属于R) 求: 若f(x0)=6/5,x0属于[π/4,π/2],求cos2x0的值
2个回答
2010-12-11
展开全部
f(x)=2√3sinxcosx+2cosx^2-1=√3sin(2x)+cos(2x)=2sin(2x+π/6)
f(x0)=2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
sin2x0cosπ/6+cos2x0sinπ/6=3/5
(√3/2)sin2x0+(1/2)cos2x0=3/5
sin2x0=√[1-(cos2x0)^2]
√[1-(cos2x0)^2](√3/2)+(1/2)cos2x0=3/5
设cos2x0=t
(√3)√(1-t^2)+t=6/5=1.2
t约等于0.9929
f(x0)=2sin(2x0+π/6)=6/5
sin(2x0+π/6)=3/5
sin2x0cosπ/6+cos2x0sinπ/6=3/5
(√3/2)sin2x0+(1/2)cos2x0=3/5
sin2x0=√[1-(cos2x0)^2]
√[1-(cos2x0)^2](√3/2)+(1/2)cos2x0=3/5
设cos2x0=t
(√3)√(1-t^2)+t=6/5=1.2
t约等于0.9929
展开全部
f(x0)=2√3sinx0cosx0+2(cosx0)^2-1=6/5
√3sin2x0+cos2x0=6/5
√3√[1-(cos2x0)^2+cos2x0=6/5
√3√[1-(cos2x0)^2]=6/5-cos2x0
3[1-(cos2x0)^2]=[6/5-cos2x0]^2
(2cos2x0-3/5)^2=48/25
cos2x0=3/10±2√3/5
x0属于[π/4,π/2],故cos2x0=3/10-2√3/5
√3sin2x0+cos2x0=6/5
√3√[1-(cos2x0)^2+cos2x0=6/5
√3√[1-(cos2x0)^2]=6/5-cos2x0
3[1-(cos2x0)^2]=[6/5-cos2x0]^2
(2cos2x0-3/5)^2=48/25
cos2x0=3/10±2√3/5
x0属于[π/4,π/2],故cos2x0=3/10-2√3/5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询