求limn趋向∞【(1^k+2^k+...+n^k)/n^k】-n/k+1】极限值
1/2。
用c(k+1,i)(i=0,1,……,k+1)表示从k+1中取出i个数的组合数。利用自然数1到n的k次方求和公式的递推式n^(k+1)-(n-1)^(k+1)=c(k+1,1)n^k-c(k+1,2)n^(k-1)+c(k+1,3)n^(k-2)+……-(-1)^(k+1)。对其求和,整理有n^(k+1)-(k+1)∑n^k=-c(k+1,2)∑n^(k-1)+∑c(k+1,3)n^(k-2)+……-(-1)^(k+1)n。
又(1^k+2^k+……+n^k)/n^k-n/(k+1)=[(k+1)∑m^k-n^(k+1)]/[(k+1)n^k]=[c(k+1,2)∑n^(k-1)-∑c(k+1,3)n^(k-2)+……+n(-1)^(k+1)]/[(k+1)n^k](m=1,2,……n)。按照前述递推式,k∑n^(k-1)的首项必然是n^k,而其余项的次数均比k低,∴lim(n→∞)[(1^k+2^k+……+n^k)/n^k-n/(k+1)]=1/2。
极限的求法有很多种:
1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值
2、利用恒等变形消去零因子(针对于0/0型)
3、利用无穷大与无穷小的关系求极限
4、利用无穷小的性质求极限
5、利用等价无穷小替换求极限,可以将原式化简计算
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限