1个回答
展开全部
证明:方法1:(面积法)
三角形ABM面积S=(1/2)*AB*AM*sin∠BAM,
三角形ACM面积S=(1/2)*AC*AM*sin∠CAM,
所以三角形ABM面积S:三角形ACM面积S=AB:AC
又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比,
证明2图
即三角形ABM面积S:三角形ACM面积S=BM:CM
所以AB/AC=MB/MC
方法2(相似形)
过C作CN平行于AB交AM的延长线于N
三角形ABM相似三角形NCM,
AB/NC=BM/CM,
又可证明∠CAN=∠ANC
所以AC=CN,
所以AB/AC=MB/MC
证明3图
方法3(相似形)
过M作MN平行于AB交AC于N
三角形ABC相似三角形NMC,
AB/AC=MN/NC,AN/NC=BM/MC
又可证明∠CAM=∠AMN
所以AN=MN,
所以AB/AC=AN/NC
所以AB/AC=MB/MC
方法4(正弦定理)
作三角形的外接圆,AM交圆于D,
由正弦定理,得,
证明4图
AB/sin∠BMA=BM/sin∠BAM,
AC/sin∠CMA=CM/sin∠CAM
又∠BAM=∠CAM,∠BMA+∠AMC=180
sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC,
所以AB/AC=MB/MC
百科有,自己去看吧!http://baike.baidu.com/view/276158.htm
三角形ABM面积S=(1/2)*AB*AM*sin∠BAM,
三角形ACM面积S=(1/2)*AC*AM*sin∠CAM,
所以三角形ABM面积S:三角形ACM面积S=AB:AC
又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比,
证明2图
即三角形ABM面积S:三角形ACM面积S=BM:CM
所以AB/AC=MB/MC
方法2(相似形)
过C作CN平行于AB交AM的延长线于N
三角形ABM相似三角形NCM,
AB/NC=BM/CM,
又可证明∠CAN=∠ANC
所以AC=CN,
所以AB/AC=MB/MC
证明3图
方法3(相似形)
过M作MN平行于AB交AC于N
三角形ABC相似三角形NMC,
AB/AC=MN/NC,AN/NC=BM/MC
又可证明∠CAM=∠AMN
所以AN=MN,
所以AB/AC=AN/NC
所以AB/AC=MB/MC
方法4(正弦定理)
作三角形的外接圆,AM交圆于D,
由正弦定理,得,
证明4图
AB/sin∠BMA=BM/sin∠BAM,
AC/sin∠CMA=CM/sin∠CAM
又∠BAM=∠CAM,∠BMA+∠AMC=180
sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC,
所以AB/AC=MB/MC
百科有,自己去看吧!http://baike.baidu.com/view/276158.htm
参考资料: http://baike.baidu.com/view/276158.htm
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
GamryRaman
2023-06-12 广告
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电...
点击进入详情页
本回答由GamryRaman提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询