如图 在平面直角坐标系xOy中 直线y=3/4x+8与x轴,y轴分别交于点A 30
如图在平面直角坐标系xOy中直线y=3分之4x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将三角形DAB沿直线AD折叠,点B恰好落在x轴正半轴的点C处。(...
如图 在平面直角坐标系xOy中 直线y=3分之4x+8与x轴,y轴分别交于点A,点B,点D在y轴的负半轴上,若将三角形DAB沿直线AD折叠,点B恰好落在x轴正半轴的点C处。
(1)求AB的长和点C的坐标
(2)求直线CD的解析式 展开
(1)求AB的长和点C的坐标
(2)求直线CD的解析式 展开
2016-05-17
展开全部
如图①,在平面直角坐标系xoy中,直线 y=-33x+2分别交x轴、y轴于C、A两点.将射线AM绕着点A顺时针旋45°得到射线AN.点D为AM上的动点,点B为AN上的动点,点C在∠MAN的内部.
(1)求线段AC的长;
(2)当AM∥x轴,且四边形ABCD为梯形时,求△BCD的面积;
(3)求△BCD周长的最小值;
(4)当△BCD的周长取得最小值,且 BD=526时,△BCD的面积为.(第(4)问需填写结论,不要求书写)考点:一次函数综合题.
专题:动点型.
分析:(1)因为直线 y=-33+2与x轴、y轴分别交于C、A两点,所以分别令y=0,x=0,即可求出点C、点A的坐标,即可求出OA、OC的长度,利用勾股定理即可求出AC=4;
(2)因为AM∥x轴,且四边形ABCD为梯形,所以需分情况讨论:
①当AD∥BC时,因为将射线AM绕着点A顺时针旋45°得到射线AN,点B为AN上的动点,所以∠DAB=45度.利用两直线平行,内错角相等可得∠ABO=45°,OB=OA=2,又因 OC=23,所以 BC=23-2,所以 S△BCD=12BCOA=23-2.
②当AB∥DC时,△BCD的面积=△ADC的面积,因为OA=2,OC=2 3,AC=4,所以∠DAC=∠ACO=30°,作CE⊥AD于E,因为∠EDC=∠DAB=45°,所以EC=ED=0.5AC=2,AE=2 3,所以AD=2 3-2,S△BCD= 23-2.
(3)可作点C关于射线AM的对称点C1,点C关于射线AN的对称点C2.由轴对称的性质,可知CD=C1D,CB=C2B.
∴CB+BD+CD=C2B+BD+C1D=C1C2,并且有∠C1AD=∠CAD,∠C2AB=∠CAB,AC1=AC2=AC=4.∠C1AC2=90°.
连接C1C2.利用两点之间线段最短,可得到当B、D两点与C1、C2在同一条直线上时,△BCD的周长最小,最小值为线段C1C2的长.
(4)根据(3)的作图可知四边形AC1CC2的对角互补,因此,∠C2C C1=135°.
利用∠B CC2+∠DCC1+∠BCD=135°,∠BC2C+∠DC1C+∠BCC2+∠DCC1+∠BCD=180°,结合轴对称可得∠BCD=90°.
利用勾股定理得到CB2+CD2=BD2=( 526)2,因为CB+CD=4 2- 526,可推出CBCD的值,进而求出三角形的面积.
解答:解(1)∵直线y= -33x+2与x轴、y轴分别交于C、A两点,
∴点C的坐标为(2 3,0),点A的坐标为(0,2).
∴AC=4.
(2)当AD∥BC时,
依题意,可知∠DAB=45°,
∴∠ABO=45°.
∴OB=OA=2.
∵OC=2,
∴BC=2 3-2.
∴S△BCD= 12BCOA=2 3-2.
当AB∥DC时,
可得S△BCD=S△ACD.
设射线AN交x轴于点E,
∵AD∥x轴,
∴四边形AECD为平行四边形.
∴S△AEC=S△ACD.
∴S△BCD=S△AEC= 12CEOA=2 3-2.
综上所述,当AM∥x轴,且四边形ABCD为梯形时,S△BCD=2 3-2.
(3)作点C关于射线AM的对称点C1,点C关于射线AN的对称点C2.
由轴对称的性质,可知CD=C1D,CB=C2B.
∴CB+BD+CD=C2B+BD+C1D=C1C2连接AC1、AC2,
可得∠C1AD=∠CAD,∠C2AB=∠CAB,AC1=AC2=AC=4.
∵∠DAB=45°,
∴∠C1AC2=90°.
连接C1C2.
∵两点之间线段最短,
∴当B、D两点与C1、C2在同一条直线上时,△BCD的周长最小,最小值为线段C1C2的长.
∴△BCD的周长的最小值为4 2.
(4)根据(3)的作图可知四边形AMCN的对角互补,其中∠DAB=45°,因此,∠C2C C1=135°.
∵∠B CC2+∠DCC1+∠BCD=135°,∠BC2C+∠DC1C+∠BCC2+∠DCC1+∠BCD=180°,
∠BC2C=∠BCC2,
∠DCC1=∠DC1C,
∴∠BCD=90°.
∴CB2+CD2=BD2=( 526)2
∵CB+CD=4 2- 526,
∴2CBCD=( 1926)2-( 526)2∴ CBCD=283.
∴ S=12CBCD=143.
点评:本题需仔细分析题意,结合图形,利用轴对称、勾股定理来解决问题,另外解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
参考!!!!!!!!!!!!!!!!!!!!1
(1)求线段AC的长;
(2)当AM∥x轴,且四边形ABCD为梯形时,求△BCD的面积;
(3)求△BCD周长的最小值;
(4)当△BCD的周长取得最小值,且 BD=526时,△BCD的面积为.(第(4)问需填写结论,不要求书写)考点:一次函数综合题.
专题:动点型.
分析:(1)因为直线 y=-33+2与x轴、y轴分别交于C、A两点,所以分别令y=0,x=0,即可求出点C、点A的坐标,即可求出OA、OC的长度,利用勾股定理即可求出AC=4;
(2)因为AM∥x轴,且四边形ABCD为梯形,所以需分情况讨论:
①当AD∥BC时,因为将射线AM绕着点A顺时针旋45°得到射线AN,点B为AN上的动点,所以∠DAB=45度.利用两直线平行,内错角相等可得∠ABO=45°,OB=OA=2,又因 OC=23,所以 BC=23-2,所以 S△BCD=12BCOA=23-2.
②当AB∥DC时,△BCD的面积=△ADC的面积,因为OA=2,OC=2 3,AC=4,所以∠DAC=∠ACO=30°,作CE⊥AD于E,因为∠EDC=∠DAB=45°,所以EC=ED=0.5AC=2,AE=2 3,所以AD=2 3-2,S△BCD= 23-2.
(3)可作点C关于射线AM的对称点C1,点C关于射线AN的对称点C2.由轴对称的性质,可知CD=C1D,CB=C2B.
∴CB+BD+CD=C2B+BD+C1D=C1C2,并且有∠C1AD=∠CAD,∠C2AB=∠CAB,AC1=AC2=AC=4.∠C1AC2=90°.
连接C1C2.利用两点之间线段最短,可得到当B、D两点与C1、C2在同一条直线上时,△BCD的周长最小,最小值为线段C1C2的长.
(4)根据(3)的作图可知四边形AC1CC2的对角互补,因此,∠C2C C1=135°.
利用∠B CC2+∠DCC1+∠BCD=135°,∠BC2C+∠DC1C+∠BCC2+∠DCC1+∠BCD=180°,结合轴对称可得∠BCD=90°.
利用勾股定理得到CB2+CD2=BD2=( 526)2,因为CB+CD=4 2- 526,可推出CBCD的值,进而求出三角形的面积.
解答:解(1)∵直线y= -33x+2与x轴、y轴分别交于C、A两点,
∴点C的坐标为(2 3,0),点A的坐标为(0,2).
∴AC=4.
(2)当AD∥BC时,
依题意,可知∠DAB=45°,
∴∠ABO=45°.
∴OB=OA=2.
∵OC=2,
∴BC=2 3-2.
∴S△BCD= 12BCOA=2 3-2.
当AB∥DC时,
可得S△BCD=S△ACD.
设射线AN交x轴于点E,
∵AD∥x轴,
∴四边形AECD为平行四边形.
∴S△AEC=S△ACD.
∴S△BCD=S△AEC= 12CEOA=2 3-2.
综上所述,当AM∥x轴,且四边形ABCD为梯形时,S△BCD=2 3-2.
(3)作点C关于射线AM的对称点C1,点C关于射线AN的对称点C2.
由轴对称的性质,可知CD=C1D,CB=C2B.
∴CB+BD+CD=C2B+BD+C1D=C1C2连接AC1、AC2,
可得∠C1AD=∠CAD,∠C2AB=∠CAB,AC1=AC2=AC=4.
∵∠DAB=45°,
∴∠C1AC2=90°.
连接C1C2.
∵两点之间线段最短,
∴当B、D两点与C1、C2在同一条直线上时,△BCD的周长最小,最小值为线段C1C2的长.
∴△BCD的周长的最小值为4 2.
(4)根据(3)的作图可知四边形AMCN的对角互补,其中∠DAB=45°,因此,∠C2C C1=135°.
∵∠B CC2+∠DCC1+∠BCD=135°,∠BC2C+∠DC1C+∠BCC2+∠DCC1+∠BCD=180°,
∠BC2C=∠BCC2,
∠DCC1=∠DC1C,
∴∠BCD=90°.
∴CB2+CD2=BD2=( 526)2
∵CB+CD=4 2- 526,
∴2CBCD=( 1926)2-( 526)2∴ CBCD=283.
∴ S=12CBCD=143.
点评:本题需仔细分析题意,结合图形,利用轴对称、勾股定理来解决问题,另外解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
参考!!!!!!!!!!!!!!!!!!!!1
追问
然而并不是我所问的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询