高三数学:a>b>0,c属于R,2a^2+1/ab+1/a(a-b)-4ac+4c^2的最小值是多少?求详解
2个回答
展开全部
解:易知,原式可以“凑形”为三个部分:原式=(2c-a)²+{ab+[1/(ab)]}+{a(a-b)+[1/a(a-b)]}.∵a>b>0.∴ab>0,a(a-b)>0.∴由基本不等式可得:ab+(1/ab)≥2.且a(a-b)+[1/a(a-b)]≥2.又(2c-a)²≥0.三个式子中的等号仅当ab=1,a(a-b)=1.2c-a=0时取得,即当a=√2,b=c=√2/2时取得。∴三式相加就得(2c-a)²+{ab+[1/ab]}+{a(a-b)+[1/a(a-b)]}≥4.∴原式min=4.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询