大学高等代数:如图,此为“求(x^n)-1在复数域和实数域上的标准分解式”的解析,只看n为偶数时的解析:
哪里来的(x+1)?按它这么分那E^(n+1)岂不是也是一根?这部分解析是不是有问题?求解答谢谢!...
哪里来的(x+1)?按它这么分那E^(n+1)岂不是也是一根?这部分解析是不是有问题?求解答谢谢!
展开
展开全部
n为奇数时,只有一个实根1,分解为:(x-1)[x^(n-1)+x^(n-2)+...+1]
n为偶数时,只有两个实根1与-1,分解为:(x-1)(x+1)[x^(n-2)+x^(n-4)+...+1]
在复数域上,恒有n个复根.记w=cos(2π/n)+isin(2π/n),分解为:(x-w)(x-w^2)...(x-w^n)
因为有一个根为2-i,所以还有一个根为2+i,
所以有个因式为(x-2+i)(x-2-i)=(x-2)^2+1=x^2-4x+5
这样就可以分解为f(x)=(x^2-4x+5)(x^2+2x-3)=(x^2-4x+5)(x+3)(x-1)
f(x)=(x-2+i)(x-2-i)(x+3)(x-1)
n为偶数时,只有两个实根1与-1,分解为:(x-1)(x+1)[x^(n-2)+x^(n-4)+...+1]
在复数域上,恒有n个复根.记w=cos(2π/n)+isin(2π/n),分解为:(x-w)(x-w^2)...(x-w^n)
因为有一个根为2-i,所以还有一个根为2+i,
所以有个因式为(x-2+i)(x-2-i)=(x-2)^2+1=x^2-4x+5
这样就可以分解为f(x)=(x^2-4x+5)(x^2+2x-3)=(x^2-4x+5)(x+3)(x-1)
f(x)=(x-2+i)(x-2-i)(x+3)(x-1)
追问
?麻烦再看一下图以及我问的问题。E^(n+1)为什么也是(x^n)-1的根?求解答谢谢!
求解答谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询