求极限,各位数学大佬帮帮忙,第二题的an范围怎么求出来
x->0
(1+x)^(1/2) ~ 1+ (1/2)x -(1/8)x^2
(1-x)^(1/2) ~ 1- (1/2)x -(1/8)x^2
(1+x)^(1/2) +(1-x)^(1/2) -2 ~ -(1/4)x^2
lim(x->0) [(1+x)^(1/2) +(1-x)^(1/2) -2]/x^2
=lim(x->0) -(1/4)x^2/x^2
=-1/4
(2)
a1>1
a(n+1) = 2- 1/an
{an} 是 递减数列
a(n+1) = 2- 1/an
n>1
2- 1/an < an
(an)^2 -2an + 1 >0
an< 1+2√2
c = max { a1, 1+2√2 }
|an| < c
第一题为啥有那个等价呀?老师没讲,第二题如何证明它是单减数列呢?我不是很懂
那是来自泰勒展式
f(x) = f(0)+ [f'(0)/1!]x + [f''(0)/2!]x^2 +....
(1+x)^(1/2) ~ 1+ (1/2)x -(1/8)x^2
(1-x)^(1/2) ~ 1- (1/2)x -(1/8)x^2
不懂得话
lim(x->0) [(1+x)^(1/2) +(1-x)^(1/2) -2]/x^2
分子,分母同时乘以 [(1+x)^(1/2) +(1-x)^(1/2) +2]
=lim(x->0) { (1+x)^(1/2) +(1-x)^(1/2)]^2 -4 }/{ x^2 . [(1+x)^(1/2) +(1-x)^(1/2) +2] }
=(1/4) lim(x->0) { [(1+x)^(1/2) +(1-x)^(1/2)]^2 -4 }/ x^2
=(1/4) lim(x->0) [ (1+x) +2(1-x^2)^(1/2) +(1-x) -4 ]/ x^2
x->0 : (1-x^2)^(1/2) ~ 1- (1/2)x^2
=(1/4) lim(x->0) [ -2 +2(1-x^2)^(1/2) ]/ x^2
=(1/4) lim(x->0) { -2 +2[1- (1/2)x^2] }/ x^2
=(1/4) lim(x->0) -x^2/ x^2
=-1/4