1个回答
展开全部
即y'+y=y²(cosx-sinx)
令u=1/y
则y=1/u,u'=-y'/y²,y'=-u'y²=-u'/u²
代入原方程,变为
-u'/u²+1/u=(1/u²)(cosx-sinx)
整理得
u'-u=sinx-cosx
对于此方程,可解得其通解为
u=C(e^x)-sinx,C为任意常数
所以,原方程的解为
y=1/[C(e^x)-sinx]
2]
xy'+y=y(lny+lnx)
xy'/y+1=lny+lnx
令t=lny
方程化为xt'+1=t+lnx
即(xt'-t)/(x^2)=(lnx-1)/(x^2)
积分,有t/x=-lnx/x+C
那么,y=(Ce^x)/x
令u=1/y
则y=1/u,u'=-y'/y²,y'=-u'y²=-u'/u²
代入原方程,变为
-u'/u²+1/u=(1/u²)(cosx-sinx)
整理得
u'-u=sinx-cosx
对于此方程,可解得其通解为
u=C(e^x)-sinx,C为任意常数
所以,原方程的解为
y=1/[C(e^x)-sinx]
2]
xy'+y=y(lny+lnx)
xy'/y+1=lny+lnx
令t=lny
方程化为xt'+1=t+lnx
即(xt'-t)/(x^2)=(lnx-1)/(x^2)
积分,有t/x=-lnx/x+C
那么,y=(Ce^x)/x
追问
最后一道题呢🤔
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询