4个回答
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加...
点击进入详情页
本回答由上海桦明教育科技提供
展开全部
y = x^(3/2), 即 x = y^(2/3)
绕 y 轴,Vy = π∫<0, 8>y^(4/3)dy = (3π/7)[y^(7/3)]<0, 8> = 384π/7
绕 x=4 ,方法一
V = 4^2·8π - π∫<0, 8>[4-y^(2/3)]^2 dy
= 128π - π∫<0, 8>[16-8y^(2/3)+y^(4/3)] dy
= 128π - π[16y - (24/5)y^(5/3) + (3/7)y^(7/3)]<0, 8>
= 128π - π[128 - 768/5 + 384/7] = (98+26/35)π
方法二 V = 4^2·8π - ∫<0, 4>2π(4-x)x^(3/2) dx =
= 128π - 2π∫<0, 4>[4x^(3/2)-x^(5/2)] dx
= 128π - 2π[(8/5)x^(5/2) - (2/7)x^(7/2)]<0, 4>
= 128π - 2π(256/5-256/7) = 128π - (29+9/35)π = (98+26/35)π
绕 y 轴,Vy = π∫<0, 8>y^(4/3)dy = (3π/7)[y^(7/3)]<0, 8> = 384π/7
绕 x=4 ,方法一
V = 4^2·8π - π∫<0, 8>[4-y^(2/3)]^2 dy
= 128π - π∫<0, 8>[16-8y^(2/3)+y^(4/3)] dy
= 128π - π[16y - (24/5)y^(5/3) + (3/7)y^(7/3)]<0, 8>
= 128π - π[128 - 768/5 + 384/7] = (98+26/35)π
方法二 V = 4^2·8π - ∫<0, 4>2π(4-x)x^(3/2) dx =
= 128π - 2π∫<0, 4>[4x^(3/2)-x^(5/2)] dx
= 128π - 2π[(8/5)x^(5/2) - (2/7)x^(7/2)]<0, 4>
= 128π - 2π(256/5-256/7) = 128π - (29+9/35)π = (98+26/35)π
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询