1个回答
展开全部
平常考试可能用的不多,但是在考研中非常重要,Peano余项的Taylor公式在求极限中应用广泛,而且是很简便的一种运算方法,带Lagrange余项的Taylor公式在中值定理证明题中应用也很多。
首先迈克劳林公式是泰勒公式的最重要的特殊形式,不仅要记住通式,还要记得特殊函数的迈克劳林展开式,比如指数,对数,三角函数等。
然后再去记带Peano余项的Taylor公式和带Lagrange余项的Taylor公式。从基础来巩固泰勒公式的学习的方法主要就是做题,多多利用带Peano余项的Taylor公式简化解答 求极限题,需要用到带Lagrange余项的Taylor公式的中值定理证明题也可做一些,不过相对比较少。
首先迈克劳林公式是泰勒公式的最重要的特殊形式,不仅要记住通式,还要记得特殊函数的迈克劳林展开式,比如指数,对数,三角函数等。
然后再去记带Peano余项的Taylor公式和带Lagrange余项的Taylor公式。从基础来巩固泰勒公式的学习的方法主要就是做题,多多利用带Peano余项的Taylor公式简化解答 求极限题,需要用到带Lagrange余项的Taylor公式的中值定理证明题也可做一些,不过相对比较少。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询