高数解题,要步骤
1个回答
展开全部
(3)原式=∫(1,2)dy∫(y,y^2)sin(πx/2y)dx
=∫(1,2)dy*[-(2y/π)*cos(πx/2y)|(y,y^2)]
=∫(1,2) (-2y/π)*cos(πy/2)dy
=∫(1,2) (-4y/π^2)*d[sin(πy/2)]
=(-4y/π^2)*sin(πy/2)|(1,2)+∫(1,2) (4/π^2)*sin(πy/2)dy
=4/π^2-(8/π^3)*cos(πy/2)|(1,2)
=4/π^2+8/π^3
=∫(1,2)dy*[-(2y/π)*cos(πx/2y)|(y,y^2)]
=∫(1,2) (-2y/π)*cos(πy/2)dy
=∫(1,2) (-4y/π^2)*d[sin(πy/2)]
=(-4y/π^2)*sin(πy/2)|(1,2)+∫(1,2) (4/π^2)*sin(πy/2)dy
=4/π^2-(8/π^3)*cos(πy/2)|(1,2)
=4/π^2+8/π^3
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询