设函数y=f(x+y) ,其中f具有二阶导数,且f'不等于1,求二阶导数
2个回答
展开全部
设函数y=f(x+y)
,其中f具有二阶导数,且f'不等于1,求二阶导数
y=f(x+y)
则:
y'=f'(x+y)*(1+y')=f'(x+y)+f'(x+y)*y'
===>
[1-f'(x+y)]*y'=f'(x+y)
===>
y'=f'(x+y)/[1-f'(x+y)]
所以:
y''={f''(x+y)*(1+y')*[1-f'(x+y)]-f'(x+y)*[-f''(x+y)*(1+y')]}/[1-f'(x+y)]^2
=f''(x+y)*(1+y')/[1-f'(x+y)]^2
=f''(x+y)*[1/1-f'(x+y)]/[1-f'(x+y)]^2
=f''(x+y)/[1-f'(x+y)]^3.
,其中f具有二阶导数,且f'不等于1,求二阶导数
y=f(x+y)
则:
y'=f'(x+y)*(1+y')=f'(x+y)+f'(x+y)*y'
===>
[1-f'(x+y)]*y'=f'(x+y)
===>
y'=f'(x+y)/[1-f'(x+y)]
所以:
y''={f''(x+y)*(1+y')*[1-f'(x+y)]-f'(x+y)*[-f''(x+y)*(1+y')]}/[1-f'(x+y)]^2
=f''(x+y)*(1+y')/[1-f'(x+y)]^2
=f''(x+y)*[1/1-f'(x+y)]/[1-f'(x+y)]^2
=f''(x+y)/[1-f'(x+y)]^3.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询