展开全部
原式=lim(x->0) e^[ln(sinx/x)/(1-cosx)]
=e^lim(x->0) (lnsinx-lnx)/(x^2/2)
=e^lim(x->0) (cotx-1/x)/x
=e^lim(x->0) (xcosx-sinx)/(x^2*sinx)
=e^lim(x->0) (xcosx-sinx)/(x^3)
=e^lim(x->0) (cosx-xsinx-cosx)/(3x^2)
=e^lim(x->0) (-sinx)/(3x)
=e^(-1/3)
=e^lim(x->0) (lnsinx-lnx)/(x^2/2)
=e^lim(x->0) (cotx-1/x)/x
=e^lim(x->0) (xcosx-sinx)/(x^2*sinx)
=e^lim(x->0) (xcosx-sinx)/(x^3)
=e^lim(x->0) (cosx-xsinx-cosx)/(3x^2)
=e^lim(x->0) (-sinx)/(3x)
=e^(-1/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询