2个回答
展开全部
原式=lim(n->∞) [(n+1)(n+2)...(2n)/(n^n)]^(1/n)
=lim(n->∞) [(1+1/n)(1+2/n)...(1+n/n)]^(1/n)
=lim(n->∞) e^{ln[(1+1/n)(1+2/n)...(1+n/n)]^(1/n)}
=e^lim(n->∞) (1/n)*ln[(1+1/n)(1+2/n)...(1+n/n)]
=e^lim(n->∞) (1/n)*[ln(1+1/n)+ln(1+2/n)+...+ln(1+n/n)]
=e^∫(0,1) ln(1+x)dx
=e^[(1+x)ln(1+x)-x]|(0,1)
=e^(2ln2-1)
=e^(ln4-1)
=4/e
=lim(n->∞) [(1+1/n)(1+2/n)...(1+n/n)]^(1/n)
=lim(n->∞) e^{ln[(1+1/n)(1+2/n)...(1+n/n)]^(1/n)}
=e^lim(n->∞) (1/n)*ln[(1+1/n)(1+2/n)...(1+n/n)]
=e^lim(n->∞) (1/n)*[ln(1+1/n)+ln(1+2/n)+...+ln(1+n/n)]
=e^∫(0,1) ln(1+x)dx
=e^[(1+x)ln(1+x)-x]|(0,1)
=e^(2ln2-1)
=e^(ln4-1)
=4/e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询