设f(x)=e^(-x),则∫[f(lnx)的导数/x]dx=?
1个回答
展开全部
f(lnx)=1/x,我认为这个结果是对的,解答如下:
1、如果函数y=lnx,
那么y'=(lnx)'=1/x;
2.如果函数是y=f(lnx),那么y'=[f(lnx)]'=f'(x)*(lnx)'=f'(x)/x.但此题不能看成是复合函数,它是函数y=f(x)=e^(-x),当x取lnx的导数值。
此道题的结果如下:
∫[f(lnx)'/x]dx
=∫-{(1/x)/x}dx
=-∫(1/x^2)dx
=1/x
+c.
1、如果函数y=lnx,
那么y'=(lnx)'=1/x;
2.如果函数是y=f(lnx),那么y'=[f(lnx)]'=f'(x)*(lnx)'=f'(x)/x.但此题不能看成是复合函数,它是函数y=f(x)=e^(-x),当x取lnx的导数值。
此道题的结果如下:
∫[f(lnx)'/x]dx
=∫-{(1/x)/x}dx
=-∫(1/x^2)dx
=1/x
+c.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询