若点集E的边界不属于E,则边界点一定是聚点。怎么证明?

若点集E的边界不属于E,则边界点一定是聚点。怎么证明?... 若点集E的边界不属于E,则边界点一定是聚点。怎么证明? 展开
 我来答
粘羽倪骥
2019-04-19 · TA获得超过1210个赞
知道小有建树答主
回答量:2031
采纳率:100%
帮助的人:10万
展开全部
点集E的边界点的定义:如果x为E的边界点,则对任何含x且存在异于x的点的邻域G,G与E交非空,G与E的补集交亦非空.
而聚点的定义:若x为E的聚点,则任何对于x的任何非空去心邻域G/{x},G/{x}与E交非空.
因此可见当边界点x不属于E时,那么G交E=G/{x}交E非空.由聚点定义即得x为聚点.
可能聚点和边界点的定义有很多种版本.但基本上是等价的.不过上面的定义对于证明来说可以一步到位.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式