二阶线性非齐次微分方程通解

 我来答
641038654

2020-12-19 · TA获得超过10.9万个赞
知道顶级答主
回答量:7.1万
采纳率:88%
帮助的人:7548万
展开全部
二阶常系数非齐次线性微分方程的表达式为y''+py'+qy=f(x),其特解y*设法分为:
1.如果f(x)=P(x),Pn(x)为n阶多项式;
2.如果f(x)=P(x)e^αx,Pn(x)为n阶多项式。
二阶线性微分方程其实可以通过凑微分降阶法求解,但过程略微复杂,不过相应的过程却能充分体现分离变量法。
值得一提的是,一阶线性微分方程所谓常数变易法可以用积分因子法替代,即对下面的方程
x'_t+p(t)x=q(t)
两边同乘一个 \text{e}^{\int{p(t)\text{d}t}},得到一个乘法导数的形式,即
x'_t\text{e}^{\int{p(t)\text{d}t}}+p(t)\text{e}^{\int{p(t)\text{d}t}}x=q(t)\text{e}^{\int{p(t)dt}}
把x\text{e}^{\int{p(t)\text{d}t}}当作一个变量,就可实现分离变量。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式